
IO-Warrior Dynamic Library
V1.5 for Windows

Applicable for all IO-Warriors
Code Mercenaries

Overview
The IO-Warrior Kit Dynamic Library provides a simple API to access all IO-Warrior products from Code
Mercenaries. It is intended to be used with any programming language available on Windows or Linux.
Sample programs are included for Microsoft VC++ 6, MS Visual Basic 6 and Borland Delphi 6 for
Windows and C for Linux. The name of the library is iowkit.dll for Windows and libiowkit.so for Linux.
The API is deliberately simple. It does not address plug and unplug of IO-Warriors for example.
It allows access to several IO-Warriors in parallel though. The limit is 16 IO-Warriors. If this limit is too
low then it is possible to recompile the Windows DLL with a higher limit. The source code is included in
the SDK.

The starting point of all activity is the function IowKitOpenDevice(). It opens all IO-Warriors
connected to the computer. Likewise IowKitCloseDevice() closes all open devices.
IowKitGetNumDevs() tells you how many devices have been found and
IowKitGetDeviceHandle() gives access to the individual devices of the list. From there on it is
mainly IowKitRead(), IowKitReadNonBlockinge() and IowKitWrite() to communicate
with the device. The precise data to read and write is explained in the IO-Warrior data sheet
"IOWarriorDatasheet.pdf".

The IO-Warriors have two communication channels. In USB terminology this is called an interface or
pipe. Pipe 0 is used to directly access the I/O pins, whereas pipe 1 allows access to the special functions
of the IO-Warrior. Consequently IowKitRead() and IowKitWrite() have a numPipe parameter.
IowKitReadImmediate() is only for access to the I/O pins so it abstracts from the pipes and always
returns 32 bits in a DWORD.

As of version 1.4 the dynmaic library is threadsafe. Also the DLL loads in Windows 95 and Windows NT,
but does not find any IO-Warriors due to the lack of USB support in these Windows versions.

For Linux libiowkit.so has been implemented which exposes the same API as iowkit.dll. It needs the
driver module iowkit.ko to be installed in the Linux kernel. Do not be afraid. Installing a kernel module is
simple.

iowkit.dll and libiowkit.so also expose the API functions as methods for a Java class to allow Java
programs to access the IO-Warrior directly. This is documented separately.

The API has been expanded to handle the new IOW56. Some examples (mainly „Simple IO“) have been
expanded to handle IOW56. The expansion is preliminary and needs some finetuning.

IO-Warrior Dynamic Library V1.5 8. Dez 2005 1

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

Data structures
Data with the devices is exchanged in the form of reports. Each report is identified by a report ID which
is the first byte of any report. For Linux the missing ReportID for Pipe0 is simulated to make the API
identical to the Windows API.

The report ID assignment is per pipe. Pipe 0 for the I/O pins has only one type of report so it does not use
a reportID. But Windows requires that a reportID is provided, even though the reportID is always 0. The
difference between IO-Warrior24 and IO-Warrior40 is that the former has a report size of 3 bytes (report
ID and 2 bytes payload), whereas the latter has a report size of 5 bytes (reportID and 4 bytes payload).It is
possible to always read 5 bytes with IowKitRead() no matter which IO-Warrior is accessed because
the read only returns in chunks of full reports and 5 bytes is too small to hold two 3 byte reports. Clean
programming with correct sizes is a wiser idea though.
Pipe 1 for the special mode functions has a report size of 8 bytes for all IO-Warriors (report ID and 7
bytes payload). See "IOWarriorDatasheet.pdf" for details on allowed report IDs and the data payload for
them. The header files provide some predefined structures for ease of use:

C:

typedef struct _IOWKIT_REPORT
 {
 UCHAR ReportID;
 union
 {
 DWORD Value;
 BYTE Bytes[4];
 };
 }
 IOWKIT_REPORT, *PIOWKIT_REPORT;

typedef struct _IOWKIT40_IO_REPORT
 {
 UCHAR ReportID;
 union
 {
 DWORD Value;
 BYTE Bytes[4];
 };
 }
 IOWKIT40_IO_REPORT, *PIOWKIT40_IO_REPORT;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 2

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5
typedef struct _IOWKIT24_IO_REPORT
 {
 UCHAR ReportID;
 union
 {
 WORD Value;
 BYTE Bytes[2];
 };
 }
 IOWKIT24_IO_REPORT, *PIOWKIT24_IO_REPORT;

typedef struct _IOWKIT_SPECIAL_REPORT
 {
 UCHAR ReportID;
 UCHAR Bytes[7];
 }
 IOWKIT_SPECIAL_REPORT, *PIOWKIT_SPECIAL_REPORT;

Delphi:

type
 PIOWKIT_REPORT = ^IOWKIT_REPORT;
 IOWKIT_REPORT = packed record
 ReportID: Byte;
 case Boolean of
 False: (Value: DWORD;);
 True: (Bytes: array [0..3] of Byte;);
 end;

 PIOWKIT40_IO_REPORT = ^IOWKIT40_IO_REPORT;
 IOWKIT40_IO_REPORT = packed record
 ReportID: Byte;
 case Boolean of
 False: (Value: DWORD;);
 True: (Bytes: array [0..3] of Byte;);
 end;

 PIOWKIT24_IO_REPORT = ^IOWKIT24_IO_REPORT;
 IOWKIT24_IO_REPORT = packed record
 ReportID: Byte;
 case Boolean of
 False: (Value: WORD;);
 True: (Bytes: array [0..1] of Byte;);
 end;

 PIOWKIT_SPECIAL_REPORT = ^IOWKIT_SPECIAL_REPORT;
 IOWKIT_SPECIAL_REPORT = packed record
 ReportID: Byte;
 Bytes: array [0..6] of Byte;
 end;

IOWKIT_REPORT dates from the 1.2 version of the API and is the same as IOWKIT40_IO_REPORT.

IO-Warrior Dynamic Library V1.5 8. Dez 2005 3

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitOpenDevice

Declaration:

IOWKIT_HANDLE IOWKIT_API IowKitOpenDevice(void);
function IowKitOpenDevice: IOWKIT_HANDLE; stdcall;

Opens all available IO-Warrior devices and returns the handle to the first device found.
The value returned is an opaque handle to the specific device to be used in most of the other functions of
the API.
The return value for failure is NULL (which is nil for Delphi and 0 for VB6). Use GetLastError()
to learn more about the reason for failure. The most common reason for failure is of course that no IO-Warrior
is connected. GetLastError() returns ERROR_DEV_NOT_EXIST for that.
Calling this function several times is possible, but not advisable. The devices get reenumerated and
therefore the position in the list for a specific device may change.
Returning the first IO-Warrior found makes it simpler for programmers to handle the use of only one IO-
Warrior.
Linux only handles a maximum of 8 IO-Warriors.

Sample usage C:

IOWKIT_HANDLE ioHandle;
ioHandle = IowKitOpenDevice();
if (ioHandle != NULL)
{

// ... success, access devices
}
else
{

// ... didn't open IoWarrior, handle error
}

Sample usage Delphi:

var
 ioHandle: IOWKIT_HANDLE;
begin
 ioHandle := IowKitOpenDevice;
 if Assigned(ioHandle) then
 begin
 // ... success, access devices
 end
 else
 begin
 // ... didn't open IoWarrior, handle error
 end;
end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 4

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitSetLegacyOpenMode

This function is only for IO-Warrior40 older than V1.0.1.0!

Declaration:

BOOL IOWKIT_API IowKitSetLegacyOpenMode(ULONG legacyOpenMode);
function IowKitSetLegacyOpenMode(legacyOpenMode: ULONG): BOOL; stdcall;

Set legacy devices open mode.

IowKitLegacyOpenMode() specifies which open mode to use if old IO-Warrior40 chips are present.
IOW_OPEN_SIMPLE - open simple endpoints only.
IOW_OPEN_COMPLEX - open complex endpoints only.
Legacy open mode does not affect new IO-Warrior chips which have serial number support (Firmware
V1.0.1.0 and later), IOW SDK always opens both endpoints for new IO-Warriors.
The return value is TRUE (1) for the parameters IOW_OPEN_SIMPLE and IOW_OPEN_COMPLEX
and FALSE (0) otherwise.
By default IOW SDK opens only simple endpoints on old IO-Warrior 40 chips, so if you want to open
the complex endpoints, you must call IowKitSetLegacyOpenMode(IOW_OPEN_COMPLEX)
before calling IowKitOpenDevice().
Note that because the SDK opens only one endpoint for each legacy device, there will always be only one
pipe for each device, thus you should always use 0 as numPipe in calls to IowKitRead()/
IowKitWrite() functions.

As of dynamic library version 1.4 this function is deprecated. The dynamic library can now handle even
old IO-Warrior40 chips without serial number fully. The only difference is now that the older firmware
revisions do not implement all Special Mode functions.

Sample usage C:

IOWKIT_HANDLE ioHandle;

IowKitSetLegacyOpenMode(IOW_OPEN_COMPLEX);
ioHandle = IowKitOpenDevice();

Sample usage Delphi:

var
 ioHandle: IOWKIT_HANDLE;
begin
 IowKitSetLegacyOpenMode(IOW_OPEN_COMPLEX);
 ioHandle := IowKitOpenDevice;
end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 5

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitGetProductId

Declaration:

ULONG IOWKIT_API IowKitProductId(IOWKIT_HANDLE iowHandle);
function IowKitGetProductId(devHandle: IOWKIT_HANDLE): ULONG; stdcall;

Return the Product ID of the IO-Warrior device identified by iowHandle.
The Product ID is a 16-bit Word identifying the specific kind of IO-Warrior. For easier compatibility with
VB6 the function returns a 32-bit DWORD with the upper word set to 0.
IOWKIT_PRODUCT_ID_IOW40 (0x1500, $1500, &H1500) is returned for an IO-Warrior 40
whereas IOWKIT_PRODUCT_ID_IOW24 (0x1501, $1501, &H1501) is returned for an IO-Warrior
24. 0 is returned for an invalid iowHandle.
The value is cached in the dynamic library because access to the device needs some msecs.

Sample usage C:

BOOLEAN IsIOWarrior24(IOWKIT_HANDLE ioHandle)
{

return IowKitGetProductId(ioHandle) == IOWKIT_PRODUCT_ID_IOW24;
}

BOOLEAN IsIOWarrior40(IOWKIT_HANDLE ioHandle)
{

return IowKitGetProductId(ioHandle) == IOWKIT_PRODUCT_ID_IOW40;
}

Sample usage Delphi:

function IsIOWarrior24(ioHandle: IOWKIT_HANDLE): Boolean;
begin
 Result := IowKitGetProductId(ioHandle) = IOWKIT_PRODUCT_ID_IOW24;
end;

function IsIOWarrior40(ioHandle: IOWKIT_HANDLE): Boolean;
begin
 Result := IowKitGetProductId(ioHandle) = IOWKIT_PRODUCT_ID_IOW40;
end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 6

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitGetNumDevs

Declaration:

ULONG IOWKIT_API IowKitGetNumDevs(void);
function IowKitGetNumDevs: ULONG; stdcall;

Returns the number of IO-Warrior devices present.
The function has to be called after IowKitOpenDevice() to return meaningful results.
Plugging or unplugging IO-Warriors after calling IowKitOpenDevice() is not handled. The number
IowKitGetNumDevs() returns stays the same.

Sample usage C:

IOWKIT_HANDLE ioHandle;
ULONG numDevs;

ioHandle = IowKitOpenDevice();
if (ioHandle != NULL)
{

// ... success, count devices
numDevs = IowKitGetNumDevs();

}

Sample usage Delphi:

var
 ioHandle: IOWKIT_HANDLE;
 numDevs: ULONG;
begin
 ioHandle := IowKitOpenDevice;
 if Assigned(ioHandle) then
 begin
 // ... success, count devices
 numDevs := IowKitGetNumDevs;
 end;
end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 7

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitGetDeviceHandle

Declaration:

IOWKIT_HANDLE IOWKIT_API IowKitGetDeviceHandle(ULONG numDevice);
function IowKitGetDeviceHandle(numDevice: ULONG): IOWKIT_HANDLE; stdcall;

Access a specific IO-Warrior present. numDevice is an index into the available IO-Warrior devices.
The number range is 1 to IowKitGetNumDevs(). Any value outside that range returns NULL/nil.
IowKitGetDeviceHandle(1) returns the same handle as IowKitOpenDevice().
Understand this function as an extension to IowKitOpenDevice(). IowKitOpenDevice() has
opened all IO-Warriors but has only returned the first one found. IowKitGetDeviceHandle() allows
to access the other devices found.

Sample usage C:

IOWKIT_HANDLE ioHandles[IOWKIT_MAX_DEVICES];
ULONG numDevs, i;

ioHandles[0] = IowKitOpenDevice();
if (ioHandles[0] != NULL)
{

// ... success, count devices
numDevs = IowKitGetNumDevs();
// get all IO-Warriors
for(i = 2; i <= numDevs; i++)
ioHandles[i-1] = IowKitGetDeviceHandle(i);

}

Sample usage Delphi:

var
 ioHandles: array [1..IOWKIT_MAX_DEVICES] of IOWKIT_HANDLE;
 I: ULONG;
begin
 ioHandles[1] := IowKitOpenDevice;
 if Assigned(ioHandles[1]) then
 // get all IO-Warriors
 for I := 2 to IowKitGetNumDevs do
 ioHandles[I] := IowKitGetDeviceHandle(I);
end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 8

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitGetRevision

Declaration:

ULONG IOWKIT_API IowKitGetRevision(IOWKIT_HANDLE iowHandle);
function IowKitGetRevision(devHandle: IOWKIT_HANDLE): ULONG; stdcall;

A new function of dynamic library version 1.4.
Return the revision of the firmware of the IO-Warrior device identified by iowHandle.
The revision is a 16-bit Word telling the revision of the firmware. For easier compatibility with VB6 the
function returns a 32-bit DWORD with the upper word set to 0.
The revision consists of 4 hex digits. $1021 designates the current revision 1.0.2.1. 0 is returned for an
invalid iowHandle.
Legacy IO-Warriors (without serial number) have a revision < 1.0.1.0 (0x1010, $1010, &H1010).
The value is cached in the dynamic library because access to the device needs some msecs.

Sample usage C:

BOOLEAN IsLegacyIOWarrior(IOWKIT_HANDLE ioHandle)
{

return IowKitGetRevision(ioHandle) < IOW_NON_LEGACY_REVISION;
}

Sample usage Delphi:

function IsLegacyIOWarrior(ioHandle: IOWKIT_HANDLE): Boolean;
begin
 Result := IowKitGetRevision(ioHandle) < IOW_NON_LEGACY_REVISION;
end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 9

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitGetSerialNumber

Declaration:

BOOL IOWKIT_API IowKitGetSerialNumber(IOWKIT_HANDLE iowHandle, PWCHAR serialNumber);
function IowKitGetSerialNumber(devHandle: IOWKIT_HANDLE;
 serialNumber: PWideChar): BOOL; stdcall;

Fills a buffer with the serial number string of the specific IO-Warrior identified by iowHandle.
All IO-Warriors (for IOW40 only those with firmware V1.0.1.0 and later) contain an 8 digit serial
number. The serial number is represented as an Unicode string. The buffer pointed to by
serialNumber must be big enough to hold 9 Unicode characters (18 bytes), because the string is
terminated in the usual C way with a 0 character.

On success, this function copies the IO-Warrior serial number string to the buffer and returns TRUE. It
fails and returns FALSE if the IO-Warrior does not have a serial number or if either iowHandle or
serialNumber buffer are invalid.

Sample usage C:

void ShowSerialNumber(IOWKIT_HANDLE ioHandle)
{

WCHAR buffer[9];

IowKitGetSerialNumber(ioHandle, buffer);
printf("%ws\n", buffer);

}

Sample usage Delphi:

procedure ShowSerialNumber(ioHandle: IOWKIT_HANDLE);
var
 Buffer: array [0..8] of WideChar;
begin
 IowKitGetSerialNumber(ioHandle, @Buffer[0]);
 ShowMessage(Buffer);
end;

Sample usage Visual Basic 6:

Dim N As Long
Dim S(18) As Byte

N = IowKitGetSerialNumber(IowKitGetDeviceHandle(1), S(0))
Label.Caption = S

IO-Warrior Dynamic Library V1.5 8. Dez 2005 10

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitCloseDevice

Declaration:

void IOWKIT_API IowKitCloseDevice(IOWKIT_HANDLE devHandle);
procedure IowKitCloseDevice(devHandle: IOWKIT_HANDLE); stdcall;

Close all IO-Warriors.
You must call this function when you are done using IO-Warriors in your program.
If multiple IO-Warriors are present all will be closed by this function.

IowKitOpenDevice() and IowKitCloseDevice() use a IOWKIT_HANDLE for the most
common case of only one IO-Warrior connected to the computer. This way you do not have to think about
IowKitGetNumDevs() or IowKitGetDeviceHandle() at all.

As of dynamic library version 1.4 the function ignores the parameter completely. Since it closes all
opened IO-Warriors anyway, there is no real need to check if the parameter is the IOWKIT_HANDLE
returned by IowKitOpenDevice().
The parameter is now only retained for compatibility and cleaner looking sources. If you handle only a
single IO-Warrior in your program then IowKitOpenDevice() and IowKitCloseDevice() look
and work as intuition suggests.

Sample usage C and Delphi:

// OK, we're done, close IO-Warrior
IowKitCloseDevice(ioHandle);

...

IO-Warrior Dynamic Library V1.5 8. Dez 2005 11

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitRead

Declaration:

ULONG IOWKIT_API IowKitRead(IOWKIT_HANDLE devHandle, ULONG numPipe,
 PCHAR buffer, ULONG length);
function IowKitRead(devHandle: IOWKIT_HANDLE; numPipe: ULONG;
 buffer: PChar; length: ULONG): ULONG; stdcall;

Read data from IO-Warrior.
This function reads length bytes from IO-Warrior and returns the number of bytes read if successful.
Note that you must specify the number of the pipe (see IO-Warrior specs) to read from. numPipe ranges
from 0 to IOWKIT_MAX_PIPES-1.
Since the IO-Warriors are HID devices, you can only read the data in chunks called reports. Each report is
preceded by a ReportID byte. The "IOWarriorDatasheet.pdf" elaborates about that.

The function returns the number of bytes read, so you should always check if it reads the correct number
of bytes, you can use GetLastError() to get error details. Keep in mind that data is always returned
in report chunks, so reading 5 bytes from the IO-pins of an IO-Warrior 24 would only return 3 bytes of
data because the IO-Warrior 24 has a 3 byte report whereas an IO-Warrior 40 has a 5 byte report.
The Special Mode pipe has a report size of 8 bytes for all IO-Warriors.
Linux does not have a ReportID byte of 0 for pipe 0 (I/O pins). To be completely compatible with
Windows libiowkit.so adds that ReportID to the data.
As of dynamic library version 1.4 and later the function correctly reads several reports at once.

ATTENTION!
This function blocks the current thread until something changes on IO-Warrior (i.e. until user presses a
button connected to an input pin, or until IIC data arrives), so if you do not want your program to be
blocked you should use a separate thread for reading from IO-Warrior. If you do not want a blocking read
use IowKitReadNonBlocking().
Alternatively you can set the read timeout with IowKitSetTimeout() to force IowKitRead() to
fail when the timeout elapsed.

Sample usage C:

IOWKIT40_IO_REPORT report;
ULONG res;

// Read IO pins of IO-Warrior 40
res = IowKitRead(ioHandle, IOW_PIPE_IO_PINS,

&report, IOWKIT40_IO_REPORT_SIZE);
if (res != IOWKIT40_IO_REPORT_SIZE)
{

// Didn't read, handle error
...

}

IO-Warrior Dynamic Library V1.5 8. Dez 2005 12

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitReadNonBlocking

Declaration:

ULONG IOWKIT_API IowKitReadNonBlocking(IOWKIT_HANDLE devHandle, ULONG numPipe,
 PCHAR buffer, ULONG length);
function IowKitReadNonBlocking(devHandle: IOWKIT_HANDLE; numPipe: ULONG;
 buffer: PChar; length: ULONG): ULONG; stdcall;

New function of the 1.5 API.
Read data from IO-Warrior, but do not block if no data is available.
This function reads length bytes from IO-Warrior and returns the number of bytes read if successful.
Note that you must specify the number of the pipe (see IO-Warrior specs) to read from. numPipe ranges
from 0 to IOWKIT_MAX_PIPES-1. On error or if no data is available the function returns 0.
Since the IO-Warriors are HID devices, you can only read the data in chunks called reports. Each report is
preceded by a ReportID byte. The "IOWarriorDatasheet.pdf" elaborates about that.

The function returns the number of bytes read, so you should always check if it reads the correct number
of bytes, you can use GetLastError() to get error details. Keep in mind that data is always returned
in report chunks, so reading 5 bytes from the IO-pins of an IO-Warrior 24 would only return 3 bytes of
data because the IO-Warrior 24 has a 3 byte report whereas an IO-Warrior 40 has a 5 byte report.
The Special Mode pipe has a report size of 8 bytes for IO-Warriors 24 and 40.
Linux does not have a ReportID byte of 0 for pipe 0 (I/O pins). To be completely compatible with
Windows libiowkit.so adds that ReportID to the data.
The function can read several reports at once. It reads as many reports as available. The internal buffering can
hold up to 128 reports.

Sample usage C:

IOWKIT40_IO_REPORT report;
ULONG res;

// Read IO pins of IO-Warrior 40
res = IowKitReadNonBlocking(ioHandle, IOW_PIPE_IO_PINS,

&report, IOWKIT40_IO_REPORT_SIZE);
if (res == 0)
{

// Didn't read, handle error
}

Sample usage Delphi:

var
 Report: IOWKIT40_IO_REPORT;
 Ret: ULONG;
begin
 // Read IO pins of IO-Warrior 40
 Ret := IowKitReadNonBlocking(ioHandle, IOW_PIPE_IO_PINS,
 @report, IOWKIT40_IO_REPORT_SIZE);
 if Ret = 0 then
 begin
 // Didn't read, handle error
 end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 13

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitReadImmediate

Declaration:

BOOL IOWKIT_API IowKitReadImmediate(IOWKIT_HANDLE devHandle, PDWORD value);
function IowKitReadImmediate(devHandle: IOWKIT_HANDLE; var value: DWORD): BOOL; stdcall;

Return current value directly read from the IO-Warrior I/O pins.
The function returns TRUE if a new value has arrived otherwise it returns FALSE and places the last
value read into value.

The function can only read the I/O pins so it does not need a numPipe parameter. It also abstracts from the
number of I/O pins the device has. It always returns 32 bits as a DWORD. For the IOWarrior24 which has only
16 I/O pins the upper WORD of the DWORD is set to 0.

The function internally uses the Special Mode Function „Read current pin status“ if available. For chip
revisions predating revision 1.0.1.0 it returns the most recent value read from the IO-Pins or returns FALSE if no
value has been read yet.

The 1.4 version of the API implements another strategy. That strategy is now available through
IowKitReadNonBlocking. 1.5 reverts to the implementation of the 1.2 API to provide compatibility.

This function fails unconditionally for IOW56 devices because it cannot handle more than 32 bits. For the
IOW56 you can always use the special mode function „Get Current Pin Status“ directly instead.

Sample usage C:

DWORD bits;

if (IowKitReadImmediate(ioHandle, &bits))
{

// new data from IO-Warrior pins
...

}

Sample usage Delphi:

var
 Bits: DWORD;
begin
 if IowKitReadImmediate(ioHandle, Bits) then
 begin
 // new data from IO-Warrior pins
 ...
 end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 14

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitSetTimeout

Declaration:

BOOL IOWKIT_API IowKitSetTimeout(IOWKIT_HANDLE devHandle, ULONG timeout);
function IowKitSetTimeout(devHandle: IOWKIT_HANDLE; timeout: ULONG): BOOL; stdcall;

Set read I/O timeout in milliseconds.
It is possible to lose reports with HID devices. Since reading a HID device is a blocking call it is possible
to block your application in that case.

IowKitSetTimeout() makes IowKitRead() fail if it does not read a report in the allotted time.
If IowKitRead() times out, you have to restart any pending transaction (for example, IIC write or read
transaction) from the beginning.

It is recommended to use 1 second (1000) or bigger timeout values.

Sample usage C and Delphi:

// set read timeout to 1000 msecs
IowKitSetTimeout(ioHandle, 1000);

...

IO-Warrior Dynamic Library V1.5 8. Dez 2005 15

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitSetWriteTimeout

Declaration:

BOOL IOWKIT_API IowKitSetWriteTimeout(IOWKIT_HANDLE devHandle, ULONG timeout);
function IowKitSetWriteTimeout(devHandle: IOWKIT_HANDLE; timeout: ULONG): BOOL; stdcall;

Set write I/O timeout in milliseconds.

IowKitSetWriteTimeout() makes IowKitWrite() fail if it does not write a report in the
allotted time. If IowKitWrite() times out, you have to restart any pending transaction (for example, IIC write
transaction) from the beginning.

Failure of IowKitWrite() is uncommon. Check your hardware if you encounter write errors.
libiowkit.so does not implement IowKitSetWriteTimeout() yet.

It is recommended to use 1 second (1000) or bigger timeout values.

Sample usage C and Delphi:

// set write timeout to 1000 msecs
IowKitSetWriteTimeout(ioHandle, 1000);

...

IO-Warrior Dynamic Library V1.5 8. Dez 2005 16

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitCancelIo

Description:

BOOL IOWKIT_API IowKitCancelIo(IOWKIT_HANDLE devHandle, ULONG numPipe);
function IowKitCancelIo(devHandle: IOWKIT_HANDLE; numPipe: ULONG): BOOL; stdcall;

Cancel a read or write operation under way on one of the pipes.
This function is seldom used, because you need several threads in your program to be able to call it at all.
IowKitRead() blocks the thread so you need another thread for canceling. Setting the timeouts is an
easier way for handling read or write problems.
The function cancels pending read and write operations simultaneously.

Sample usage:

// cancel I/O for I/O pins
IowKitCancelIo(ioHandle, IOW_PIPE_IO_PINS);

...

IO-Warrior Dynamic Library V1.5 8. Dez 2005 17

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitWrite

Declaration:

ULONG IOWKIT_API IowKitWrite(IOWKIT_HANDLE devHandle, ULONG numPipe,
 PCHAR buffer, ULONG length);
function IowKitWrite(devHandle: IOWKIT_HANDLE; numPipe: ULONG;
 buffer: PChar; length: ULONG): ULONG; stdcall;

Write length bytes of data to pipe numPipe of IO-Warrior. The return value is the number of bytes
written. Writing something else than a single report of the correct size and a valid report ID for the pipe
fails for Windows. The function allows writing to the I/O pins through pipe 0 and Special Mode functions
through pipe 1. To be completely compatible with the Windows version libiowkit.so expects a ReportID 0
for pipe 0 (I/O pins) even if Linux does not have a ReportID on pipe 0. The ReportID is stripped from the
data sent to the device.

Sample write to pipe 0 of an IO-Warrior 40:
DWORD value consists of 32 bits, which correspond to the 32 IO-Warrior 40 I/O pins. Each bit has the
following meaning:
When a 1 is written to a pin the output driver of that pin is off and the pin is pulled high by an internal
resistor. The pin can now be used as an input or an output with high state.
When a 0 is written to a pin the output driver is switched on pulling the pin to ground. The pin is now a
output driving low.
For example, writing 0 (all 32 bits are zero) to IO-Warrior sets all pins as outputs driving low (so if you
have LEDs connected to them they will be on).
Reading the status of the pins does always return the logic level on the pins, not the value written to the
pin drivers.
Writing 0xFFFFFFFF (value in hex, all 32 bits set) sets all pins as inputs.
Note that if you want to use a pin as an input, you must first set it up as input, in other words, you must
write 1 to it. For connected LEDs this means they go off.

Sample usage C:

IOWKIT40_IO_REPORT report;
ULONG res;

// Write IO pins of IO-Warrior 40
report.ReportID = 0;
report.Value = 0; // all LEDs *on*
res = IowKitWrite(ioHandle, IOW_PIPE_IO_PINS,

&report, IOWKIT40_IO_REPORT_SIZE);
if (res != IOWKIT40_IO_REPORT_SIZE)
{

// Didn't write, handle error
...

}

IO-Warrior Dynamic Library V1.5 8. Dez 2005 18

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitGetThreadHandle

Description:

HANDLE IOWKIT_API IowKitGetThreadHandle(IOWKIT_HANDLE iowHandle);
function IowKitGetThreadHandle(devHandle: IOWKIT_HANDLE): THandle; stdcall;

A new function of dynamic library version 1.4.
It returns the internal Windows thread handle used to read the I/O pins of the IO-Warrior.
The function is only for programmers with expert knowledge about threads. It is provided for
manipulations like raising or lowering thread priority.
Since Linux does not need a thread for implementing the IO-Warrior functions,
IowKitGetThreadHandle() always returns 0 then.

Sample usage C:

HANDLE threadHandle;

threadHandle = IowKitGetThreadHandle(ioHandle);
if (threadHandle != NULL)
{

// lower thread priority
SetThreadPriority(threadHandle, THREAD_PRIORITY_BELOW_NORMAL);

}

Sample usage Delphi:

var
 ThreadHandle: Thandle;
begin
 ThreadHandle := IowKitGetThreadHandle(ioHandle);
 if ThreadHandle <> 0 then
 begin
 // lower thread priority
 SetThreadPriority(ThreadHandle, THREAD_PRIORITY_BELOW_NORMAL);
 end;

IO-Warrior Dynamic Library V1.5 8. Dez 2005 19

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5

IowKitVersion

Description:

PCHAR IOWKIT_API IowKitVersion(void);
function IowKitVersion: PChar; stdcall;

Return a static C string identifying the dynamic library version. This function has been added with 1.3
version of the dynamic library. Currently it returns "IO-Warrior Kit V1.5".

Sample usage C:

printf("%s\n", IowKitVersion());

...

Sample usage Delphi:

ShowMessage(IowKitVersion);

...

IO-Warrior Dynamic Library V1.5 8. Dez 2005 20

IO-Warrior Dynamic Library Code Mercenaries

for Windows V1.5
Programming by Robert Marquardt.

Legal Stuff

This document is ©2005 by Code Mercenaries.

The information contained herein is subject to change

without notice. Code Mercenaries makes no claims as

to the completeness or correctness of the information

contained in this document.

Code Mercenaries assumes no responsibility for the use

of any circuitry other than circuitry embodied in a Code

Mercenaries product. Nor does it convey or imply any

license under patent or other rights.

Code Mercenaries products may not be used in any

medical apparatus or other technical products that are

critical for the functioning of lifesaving or supporting

systems. We define these systems as such that in the

case of failure may lead to the death or injury of a

person. Incorporation in such a system requires the

explicit written permission of the president of Code

Mercenaries.

Trademarks used in this document are properties of

their respective owners.

Code Mercenaries
Hard- und Software GmbH
Karl-Marx-Str. 147a
12529 Schönefeld / Grossziethen
Germany
Tel: x49-3379-20509-20
Fax: x49-3379-20509-30
Mail: support@codemercs.com
Web: www.codemercs.com
HRB 16007 P
Geschäftsführer: Guido Körber, Christian Lucht

IO-Warrior Dynamic Library V1.5 8. Dez 2005 21

	Overview
	Data structures
	IowKitOpenDevice
	IowKitSetLegacyOpenMode
	IowKitGetProductId
	IowKitGetNumDevs
	IowKitGetDeviceHandle
	IowKitGetRevision
	IowKitGetSerialNumber
	IowKitCloseDevice
	IowKitRead
	IowKitReadNonBlocking
	IowKitReadImmediate
	IowKitSetTimeout
	IowKitSetWriteTimeout
	IowKitCancelIo
	IowKitWrite
	IowKitGetThreadHandle
	IowKitVersion

